Premium
Reactive Spinning of Cyanate Ester Fibers Reinforced with Aligned Amino‐Functionalized Single Wall Carbon Nanotubes
Author(s) -
Che Jianfei,
ChanPark Mary B.
Publication year - 2008
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200700919
Subject(s) - materials science , cyanate ester , thermosetting polymer , ultimate tensile strength , composite material , spinning , cyanate , carbon nanotube , polymerization , composite number , polymer , fiber , epoxy , polymer chemistry
We report a new approach of reactive spinning to fabricate thermosetting cyanate ester micro‐scale diameter fibers with aligned single walled carbon nanotubes (SWNTs). The composite fibers were produced by first dispersing the SWNTs (1 wt %) in cyanate ester (CE) via solvent blending, followed by pre‐polymerization, spinning and then multiple‐stage curing. The pre‐polymerization, spinning and post‐spinning cure temperatures were carefully controlled to achieve good spun crosslinked fibers. Both pristine and amino‐functionalized SWNTs were used for the reinforced fiber spinning. Amino‐functionalized SWNTs (f‐SWNTs) were prepared by reacting acid‐treated SWNTs with toluene 2,4‐diisocyanate and then ethylenediamine (EDA). FTIR, optical microscopy and scanning electron microscopy (SEM) showed that the amino‐functionalized SWNTs were covalently and uniformly dispersed into the cyanate ester matrix and aligned along the fiber axis. The alignment was further confirmed using polarized Raman spectroscopy. The composite fibers with aligned amino‐functionalized SWNTs possess improved tensile properties with respect to neat CE fibers, showing 85, 140, and 420% increase in tensile strength, elongation and stress‐strain curve area (i.e., toughness), respectively. NH 2 ‐functionalization of SWNTs improves their dispersibility, alignment and interfacial strength and hence tensile properties of composite spun fibers. Fiber spinning to align SWNTs using thermosetting resin is novel. Others have reported fiber spinning to align SWNTs in thermoplastics. However, thermosetting CE resins offer the advantages of low and controllable viscosity during spinning and reactivity with amino functional groups to enable f‐SWNT/CE covalent bonding.