z-logo
Premium
Ultrasensitive Specific Stimulant Assay Based on Molecularly Imprinted Photonic Hydrogels
Author(s) -
Hu Xiaobin,
Li Guangtao,
Li Mohan,
Huang Jing,
Li Yan,
Gao Yongbin,
Zhang Yihe
Publication year - 2008
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200700527
Subject(s) - materials science , analyte , molecular imprinting , molecularly imprinted polymer , self healing hydrogels , polymer , molecule , nanotechnology , photonic crystal , cyanine , chromatography , selectivity , optoelectronics , fluorescence , organic chemistry , chemistry , catalysis , polymer chemistry , optics , composite material , physics
Taking theophylline and (1R,2S)‐(−)‐ephedrine as template molecules, two imprinted photonic‐hydrogel films are prepared by a combination of colloidal‐crystal and molecular‐imprinting techniques. This paper shows a new approach for rapid and handy stimulant detection with high sensitivity and specificity. One film is proposed for analogous molecule assay, another one for chiral recognition. The key point of this approach is that the imprinted photonic polymer (IPP) consists of a three‐dimensional (3D), highly‐ordered and interconnected macroporous array with a thin hydrogel wall, where nanocavities complementary to analytes in shape and binding sites are distributed. This special, bicontinuous, hierarchical structure enables this polymer to report quickly, easily, sensitively and directly a molecular recognition event without any transducers and treatments for analytes (label‐free). The inherent affinity of the nanocavities, deriving from molecular imprinting, makes these sensors highly specific to analytes, even if in a competitive environment. Their sensitive and specific responses to stimulants in buffer are determined by Bragg diffractive shifts due to the lattice change of their 3D ordered macroporous arrays resulting from their preferential rebinding to the target molecules. The measurements show that the prepared hydrogel films exhibit high sensitivity in such a 0.1 f M concentration of analytes and specificity even in a competitive urinous buffer. The reported method provides a rapid and handy approach for stimulant assay and drug analysis in athletic sports.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here