Premium
Thermo‐Mechanical Responses of Liquid‐Crystal Networks with a Splayed Molecular Organization
Author(s) -
Mol G. N.,
Harris K. D.,
Bastiaansen C. W. M.,
Broer D. J.
Publication year - 2005
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200400503
Subject(s) - materials science , deformation (meteorology) , polymer , anisotropy , liquid crystal , microelectromechanical systems , mesogen , composite material , nanotechnology , optics , liquid crystalline , optoelectronics , physics
Films of liquid‐crystal networks with a splayed molecular alignment over their cross‐section display a well‐controlled deformation as a function of temperature. The deformation can be explained in terms of differences in thermal expansion depending on the average molecular orientation of the mesogenic centers of the monomeric units. The thermal expansion of the anisotropic polymers has been characterized as a function of their molecular structure and the polymerization conditions. As a reference, films with an in‐plane 90° twist have also been studied and compared with the splayed, out‐of‐plane molecular rotation. The twisted films show a complex macroscopic deformation owing to the formation of saddle‐like geometries, whereas the deformation of the splayed structured is smooth and well controlled. The deformation behavior is anticipated to be of relevance for polymer‐based microelectromechanical system (MEMS) technology.