Premium
Combined Surface and Volume Templating of Highly Porous Nanocast Carbon Monoliths
Author(s) -
Lu A.H.,
Smått J.H.,
Lindén M.
Publication year - 2005
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200305183
Subject(s) - materials science , porosimetry , porosity , chemical engineering , scanning electron microscope , monolith , mesoporous material , macropore , specific surface area , transmission electron microscopy , carbon fibers , nanotechnology , composite material , porous medium , organic chemistry , composite number , catalysis , chemistry , engineering
Nanocast carbon monoliths exhibiting a three‐ or four‐modal porosity have been prepared by one‐step impregnation, using silica monoliths containing a bimodal porosity as the scaffold. Combined volume and surface templating, together with the controlled synthesis of the starting silica monoliths used as the scaffold, enables a flexible means of pore‐size control on several length scales simultaneously. The monoliths were characterized by nitrogen sorption, scanning electron microscopy, transmission electron microscopy, and mercury porosimetry. It is shown that the carbon monoliths represent a positive replica of the starting silica monoliths on the micrometer length scale, whereas the volume‐templated mesopores are a negative replica of the silica scaffold. In addition to the meso‐ and macropores, the carbon monoliths also exhibit microporosity. The different modes of porosity are arranged in a hierarchical structure‐within‐structure fashion, which is thought to be optimal for applications requiring a high surface area in combination with a low pressure drop over the material.