z-logo
Premium
Hydrothermal Synthesis of Rare Earth (Tb, Y) Hydroxide and Oxide Nanotubes
Author(s) -
Fang Y.P.,
Xu A.W.,
You L.P.,
Song R.Q.,
Yu J.C.,
Zhang H.X.,
Li Q.,
Liu H.Q.
Publication year - 2003
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200304470
Subject(s) - materials science , nanotube , calcination , chemical engineering , hydrothermal synthesis , transmission electron microscopy , scanning electron microscope , nanotechnology , hydroxide , thermogravimetry , selective chemistry of single walled nanotubes , powder diffraction , carbon nanotube , hydrothermal circulation , optical properties of carbon nanotubes , catalysis , crystallography , organic chemistry , composite material , chemistry , engineering
In this paper, Tb(OH) 3 and Y(OH) 3 single‐crystalline nanotubes with outer diameters of 30–260 nm, inner diameters of 15–120 nm, and lengths of up to several micrometers were synthesized on a large scale by hydrothermal treatment of the corresponding oxides in the presence of alkali. In addition, Tb 4 O 7 and Y 2 O 3 nanotubes can be obtained by calcination of Tb(OH) 3 and Y(OH) 3 nanotubes at 450 °C. X‐ray diffraction (XRD), field‐emission scanning electron microscopy, transmission electron microscopy (TEM), electron diffraction (ED), energy‐dispersive X‐ray spectroscopy (EDS), thermogravimetry, and differential scanning calorimetry (DSC) have been employed to characterize these nanotube materials. The growth mechanism of rare earth hydroxide nanotubes can be explained well by the highly anisotropic crystal structure of rare earth hydroxides. These new types of rare earth compound nanotubes with open ends have uses in a variety of promising applications such as luminescent devices, magnets, catalysts, and other functional materials. Advantages of this method for easily realizing large‐scale production include that it is a simple and unique one‐pot synthetic process without the need for a catalysts or template, is low cost, has high yield, and the raw materials are readily available. The present study has enlarged the family of nanotubes available, and offers a possible new, general route to one‐dimensional single‐crystalline nanotubes of other materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here