z-logo
Premium
Size‐Specific Interactions Between Single‐ and Double‐Stranded Oligonucleotides and Cationic Water‐Soluble Oligofluorenes
Author(s) -
Wang S.,
Liu B.,
Gaylord B.S.,
Bazan G.C.
Publication year - 2003
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200304339
Subject(s) - cationic polymerization , benzene , oligonucleotide , molecule , fluorescence , materials science , conjugated system , quenching (fluorescence) , dna , polymer , photochemistry , polymer chemistry , organic chemistry , chemistry , biochemistry , physics , quantum mechanics , composite material
An improved synthetic approach was developed for the synthesis of 1,4‐bis[9′,9′‐bis(6″‐( N , N , N ‐trimethylammonium)‐hexyl)‐fluoren‐2′‐yl]benzene tetrabromide ( 1a ), 1,4‐bis[9′,9′;9″,9″‐tetra(6″′‐( N , N , N ‐trimethylammonium)‐hexyl)‐7′,2″‐bisfluoren‐2′‐yl] benzene octabromide ( 1b ) and 1,4‐bis[9′,9′;9″,9″;9″′,9″′‐hexakis(6″″‐( N , N , N ‐trimethylammonium)‐hexyl)‐7′,2″,7″,2″′‐trifluoren‐2′‐yl] benzene dodecabromide ( 1c ). These molecules provide a size‐specific series of water‐soluble oligofluorene molecules with increasing numbers of repeat units to model the interactions between cationic conjugated polymers and DNA. Fluorescence quenching and energy‐transfer measurements were performed with 1a – c and single‐stranded (ss) DNA and double‐stranded (ds) DNA, with and without fluorescein (Fl). These studies show that, on a per‐negative‐charge basis, ssDNA quenches the emission of 1a – c more effectively than dsDNA. Furthermore, we show that the energy‐transfer ratios dsDNA–Fl/ssDNA–Fl are dependent on the number of repeat units in 1a – c .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom