Premium
Template‐Assisted Self‐Assembly of Spherical Colloids into Complex and Controllable Structures
Author(s) -
Xia Y.,
Yin Y.,
Lu Y.,
McLellan J.
Publication year - 2003
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200300002
Subject(s) - materials science , dewetting , colloid , self assembly , nanotechnology , template , polymer , photonics , chemical physics , zigzag , chemical engineering , geometry , thin film , composite material , optoelectronics , physics , mathematics , engineering
Colloidal aggregates with well‐controlled sizes, shapes, and structures have been fabricated by dewetting aqueous dispersions of monodispersed spherical colloids across surfaces patterned with two‐dimensional arrays of relief structures (or templates). The capability and feasibility of this approach have been demonstrated with the organization of polymer latex or silica beads into homo‐aggregates, including circular rings; polygonal and polyhedral clusters; and linear, zigzag, and spiral chains. It was also possible to generate hetero‐aggregates in the configuration of HF and H 2 O molecules that contained spherical colloids of different sizes, compositions, densities, functions, or a combination of these features. These uniform, well‐defined aggregates of spherical colloids are ideal model systems to investigate the aerodynamic, hydrodynamic, and optical properties of colloidal particles characterized by non‐spherical shapes and/or complex topologies. They can also serve as a new class of building blocks to generate hierarchically self‐assembled structures that are expected to exhibit interesting features valuable to areas ranging from condensed matter physics to photonics.