z-logo
Premium
Methacrylate‐Based Polymer Foams with Controllable Pore Sizes and Controllable Polydispersities via Foamed Emulsion Templating
Author(s) -
Dabrowski Miriam Lucia,
Stubenrauch Cosima
Publication year - 2021
Publication title -
advanced engineering materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 114
eISSN - 1527-2648
pISSN - 1438-1656
DOI - 10.1002/adem.202001013
Subject(s) - dispersity , materials science , polymer , emulsion , microfluidics , chemical engineering , emulsion polymerization , monomer , polymerization , porosity , polymer chemistry , composite material , nanotechnology , engineering
This study reports on a novel templating route, which uses foamed emulsions as templates for porous polymers. The concept is based on the generation of a monomer‐in‐water emulsion, which is subsequently foamed via microfluidics. The monomer of choice is 1,4‐butanediol dimethacrylate (1,4‐BDDMA). After polymerization of the foamed emulsion, one obtains open‐cell polymer foams with porous pore walls. Foamed emulsions and polymer foams are generated. It is shown that foamed emulsion templating in combination with microfluidics is well‐suited to synthesize 1) monodisperse poly(1,4‐BBDMA) foams with controllable pore sizes and 2) their polydisperse counterparts with controllable polydispersities. Monodisperse templates with different bubble sizes and thus polymer foams with different pore sizes ranging from about 100–400 μm in diameter are synthesized. Microfluidics is also used for the generation of polydisperse poly(1,4‐BDDMA) foams with polydispersities between 18% and 27% but the same mean pore sizes as the monodisperse ones, i.e., we have access to polymer foams that only differ in their polydispersity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here