Premium
Thermoelectric, Magnetic, and Mechanical Characteristics of Antiferromagnetic Manganese Telluride Reinforced with Graphene Nanoplates
Author(s) -
Hooshmand Zaferani Sadeq,
Ghomashchi Reza,
Vashaee Daryoosh
Publication year - 2021
Publication title -
advanced engineering materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 114
eISSN - 1527-2648
pISSN - 1438-1656
DOI - 10.1002/adem.202000816
Subject(s) - materials science , spark plasma sintering , thermoelectric effect , thermoelectric materials , composite material , microstructure , skutterudite , ferromagnetism , seebeck coefficient , bismuth telluride , fracture toughness , antiferromagnetism , thermal conductivity , metallurgy , condensed matter physics , physics , thermodynamics
Mechanical and thermal stability are the two challenging aspects of thermoelectric compounds and modules. Microcrack formation during material synthesis and mechanical failure under thermo‐mechanical loading is commonly observed in thermoelectric materials made from brittle semiconductors. Herein, the results of graphene‐nanoplates (GNPs) reinforcement on the mechanical and thermoelectric properties of MnTe compound are reported. The binary antiferromagnetic MnTe shown promising thermoelectric characteristics due to the paramagnon–hole drag above the Néel temperature. In this study, different bulk MnTe samples are synthesized with the addition of GNPs in a small quantity (0.25–1 wt%) by powder metallurgy and spark plasma sintering. The thermoelectric factors, magnetic behavior, microstructure, and mechanical properties of the samples are evaluated and analyzed. Nearly 33% improvement is observed in the fracture toughness of MnTe reinforced with 0.25 wt% GNPs compared to the pristine structure. The Néel temperature remains approximately unaffected with the GNP inclusion; however, the low‐temperature ferromagnetic phase impurity is significantly suppressed. The thermal conductivity and power factor decrease almost equally by ≈34% at 600 K; hence, the thermoelectric figure‐of‐merit is not affected by GNP reinforcement in the optimized sample.