z-logo
Premium
Effects of Solidification Rates on Microstructure Refinement and Elemental Distribution of Ti44Al6Nb1.0Cr2.0V0.1B0.15Y Alloy by Rapid Solidification
Author(s) -
Fang Hongze,
Liu Yanhang,
Wang Shu,
Chen Ruirun,
Cui Hongzhi,
Yan Yongda,
Guo Jingjie
Publication year - 2021
Publication title -
advanced engineering materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 114
eISSN - 1527-2648
pISSN - 1438-1656
DOI - 10.1002/adem.202000809
Subject(s) - equiaxed crystals , lamellar structure , materials science , microstructure , nucleation , supercooling , indentation hardness , phase (matter) , alloy , grain size , metallurgy , grain boundary , composite material , thermodynamics , chemistry , physics , organic chemistry
In order to refine microstructure and improve mechanical properties, size of lamellar colonies and reinforced phase, distribution of elements, and microhardness with different solidification rates were studied by rapid solidification. Results show that microstructure morphology changes from equiaxed grain to granulated dendrites after rapid solidification. When speed of revolution increases, size of lamellar colonies decreases from 53.5 to 16.9 μm and length of TiB particles decreases from 60.1 to 20.4 μm. The B2 phase exists in lamellar colonies and at the boundary of lamellar colonies before rapid solidification and forms in lamellar colonies after rapid solidification. An increase in solidification rate increases degree of supercooling to increase number of nucleation particles which form before solidification front. The β phase incompletely transforms to the α phase and is retained in α phase after rapid solidification. The microstructure does not have enough time to transform completely and high‐temperature microstructure is retained at a higher cooling rate. Test results show that microhardness increases from 453 to 562 HV when speed of revolution increases from 0 to 800 rpm. Improvement of microhardness results from solution strengthening of Nb, Cr, and V, grain refinement strengthening and reduction of the reinforced phase of TiB.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here