z-logo
Premium
Thermoresistance of p ‐Type 4H–SiC Integrated MEMS Devices for High‐Temperature Sensing
Author(s) -
Dinh Toan,
Nguyen TuanKhoa,
Phan HoangPhuong,
Nguyen Quan,
Han Jisheng,
Dimitrijev Sima,
Nguyen NamTrung,
Dao Dzung Viet
Publication year - 2019
Publication title -
advanced engineering materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 114
eISSN - 1527-2648
pISSN - 1438-1656
DOI - 10.1002/adem.201801049
Subject(s) - materials science , temperature coefficient , optoelectronics , atmospheric temperature range , linearity , microelectromechanical systems , sensitivity (control systems) , power (physics) , engineering physics , electrical engineering , electronic engineering , composite material , thermodynamics , physics , engineering
There is an increasing demand for the development and integration of multifunctional sensing modules into power electronic devices that can operate in high temperature environments. Here, the authors demonstrate the tunable thermoresistance of p‐type 4H–SiC for a wide temperature range from the room temperature to above 800 K with integrated flow sensing functionality into a single power electronic chip. The electrical resistance of p‐type 4H–SiC is found to exponentially decrease with increasing temperature to a threshold temperature of 536 K. The temperature coefficient of resistance (TCR) shows a large and negative value from −2100 to −7600 ppm K −1 , corresponding to a thermal index of 625 K. From the threshold temperature of 536–846 K, the electrical resistance shows excellent linearity with a positive TCR value of 900 ppm K −1 . The authors successfully demonstrate the integration of p–4H–SiC flow sensing functionality with a high sensitivity of 1.035 μA(m s −1 ) −0.5  mW −1 . These insights in the electrical transport of p–4H–SiC aid to improve the performance of p–4H–SiC integrated temperature and flow sensing systems, as well as the design consideration and integration of thermal sensors into 4H–SiC power electronic systems operating at high temperatures of up to 846 K.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here