Premium
Microstructure and Ablation Behavior of W Coating Prepared by Atmospheric Plasma Spraying for Zr/Cu Infiltrated C/C Composites
Author(s) -
Zhou Zhe,
Sun Zexu,
Wu Huang,
Ge Yicheng,
Peng Ke,
Ran Liping,
Yi Maozhong
Publication year - 2018
Publication title -
advanced engineering materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 114
eISSN - 1527-2648
pISSN - 1438-1656
DOI - 10.1002/adem.201800010
Subject(s) - materials science , composite material , microstructure , scanning electron microscope , coating , chemical vapor infiltration , ablation , sublimation (psychology) , transmission electron microscopy , melting point , psychology , engineering , nanotechnology , psychotherapist , aerospace engineering
To improve the ablation resistance of carbon/carbon (C/C) composites, W coating prepared by atmospheric plasma spraying (APS) for Zr/Cu infiltrated C/C composites are fabricated, the Zr/Cu infiltrated C/C composites are prepared by reactive melt infiltration (RMI). The microstructural features of the composites are examined by scanning electron microscopy coupled with energy dispersive spectrometry (SEM‐EDS), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The ablation resistance of the W coated Zr/Cu infiltrated composites are tested in the oxyacetylene torch environment at heat flux of 4186 kW m −2 for 150 s. The results show that the diameter of ablation center and line ablation rate (LAR) of W coated composites are about 3.92 mm and 5.16 × 10 −3 mm s −1 . Compared to pure C/C and the Zr/Cu infiltrated composites, the diameters of ablation center of W coated composites are reduced by 18.00% and 15.52%, the LAR of W coated composites decreases by 74.52% and 23.55%. Overall, the W coated composites depict good ablation property due to the high melting point of W coating, which can be resistant to high‐temperature oxidation and ablation, the sublimation of WO 3 carries away the heat.