Premium
Durable and Recyclable Superhydrophobic Fabric and Mesh for Oil–Water Separation
Author(s) -
Bano Shaher,
Zulfiqar Usama,
Zaheer Usama,
Awais Muhammad,
Ahmad Iftikhar,
Subhani Tayyab
Publication year - 2018
Publication title -
advanced engineering materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 114
eISSN - 1527-2648
pISSN - 1438-1656
DOI - 10.1002/adem.201700460
Subject(s) - materials science , nanocomposite , durability , composite material , kerosene , abrasion (mechanical) , coating , composite number , hydrochloric acid , chemical engineering , metallurgy , organic chemistry , chemistry , engineering
The authors report durable and recyclable nanocomposite superhydrophobic coatings on two different substrates of fabric and mesh as prepared by titania nanoparticles and polydimethysiloxane (PDMS). The felted wool fabric and the steel mesh are initially coated with a thin layer of PDMS, which is followed by the deposition of nanocomposite coating of titania nanoparticles embedded in PDMS. The dual surface modification of two kinds of substrates generates highly hydrophobic surface character, which is retained after durability performance as measured in ultrasonication, sand, and emery paper abrasion tests. Oil–water separation experiments are performed using water mixtures with four oils, that is, n‐hexane, toluene, kerosene, and diesel to ensure the industrial applications of prepared composite materials. Moreover, nanocomposite coatings are tested for several cycles of oil–water separation in harsh conditions such as hot water, sodium chloride, and hydrochloric acid. The adopted approach improves the separation performance by inducing durability of the prepared nanocomposite coatings along with introducing recyclable character.