Premium
Thermal Treatment Optimization of Electrodeposited Hydroxyapatite Coatings on Ti6Al4V Substrate
Author(s) -
Drevet Richard,
Fauré Joël,
Benhayoune Hicham
Publication year - 2012
Publication title -
advanced engineering materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 114
eISSN - 1527-2648
pISSN - 1438-1656
DOI - 10.1002/adem.201100331
Subject(s) - materials science , titanium alloy , coating , scanning electron microscope , crystallinity , alloy , titanium , metallurgy , oxide , thermal treatment , substrate (aquarium) , selected area diffraction , microanalysis , chemical engineering , transmission electron microscopy , composite material , nanotechnology , oceanography , chemistry , organic chemistry , engineering , geology
Thermal behavior of electrodeposited hydroxyapatite (HAP) coating on a titanium alloy (Ti6Al4V) is investigated in order to optimize the heat treatment conditions for this prosthetic material. The synthesized coatings are annealed in air atmosphere at 400, 600, 800, and 1000 °C, and then characterized by X‐ray diffraction (XRD) and selected area electron diffraction (SAED) for structure and phases analysis. Scanning and transmission electron microscopy associated to energy dispersive X‐ray microanalysis (SEM‐EDXS and STEM) are used for morphology and composition analysis. The results show that when the electrodeposited coating is annealed at temperatures greater than 600 °C, a well‐crystallized HAP is obtained with a notable change of its morphology. However, at these temperatures the surface of Ti6Al4V alloy (uncoated zones of the implant) is deteriorated by the formation of a thick surface oxide layer. Therefore, we limit the heat treatment temperature for the electrodeposited coatings on a Ti6Al4V alloy at 550 °C. At this optimized temperature it is demonstrated that the link between the coating and the substrate is improved and the crystallinity of the coating is controlled which make it well bioactive.