z-logo
open-access-imgOpen Access
Mechanical Properties of Materials for Stem Cell Differentiation
Author(s) -
Han SeongBeom,
Kim JeongKi,
Lee Geonhui,
Kim DongHwee
Publication year - 2020
Publication title -
advanced biosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.153
H-Index - 18
ISSN - 2366-7478
DOI - 10.1002/adbi.202000247
Subject(s) - stem cell , regenerative medicine , mechanotransduction , cellular differentiation , microbiology and biotechnology , stem cell biology , cell , stem cell niche , neuroscience , biology , nanotechnology , chemistry , progenitor cell , materials science , embryo , biochemistry , genetics , reproductive technology , embryogenesis , gene
Recent findings about cell fate change induced by physical stimuli have expedited the discovery of underlying regulatory mechanisms that determine stem cell differentiation. Progress with regards to micro‐/nanofabrication technology have led to the development of advanced materials that can mimic biophysical features of in vivo related circumstances of the human body. Since the cellular microenvironment directly defines cellular structure and function, diverse material properties including stiffness, topology, and surface chemistry are investigated to regulate multiple signaling cascades involved in stem cell differentiation for the development of innovative tools that can be widely utilized in various fields ranging from basic research to medical applications. This progress report addresses essential biophysical regulation and alteration of material properties applied to control stem cell differentiation. It also presents novel strategies to regulate stem cell differentiation based on relationships between recently discovered mechanotransduction pathways and cell differentiation signaling. A new perspective on stem cell physiology will further provide a framework of biomedical applications such as regenerative medicine and stem cell therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here