z-logo
open-access-imgOpen Access
Advances in Microfluidics‐Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System‐on‐a‐Chip
Author(s) -
Kashaninejad Navid,
Shiddiky Muhammad Johirul Alam,
Nguyen NamTrung
Publication year - 2018
Publication title -
advanced biosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.153
H-Index - 18
ISSN - 2366-7478
DOI - 10.1002/adbi.201700197
Subject(s) - microfluidics , organ on a chip , nanotechnology , sperm , computer science , biology , materials science , botany
The fields of assisted reproductive technology (ART) and in vitro fertilization (IVF) have progressed rapidly, yet still need further improvements. Microfluidic technology can incorporate various ART procedures such as embryo/gamete (sperm/oocyte) analysis, sorting, manipulation, culture, and monitoring. The introduction of paper‐based and droplet‐based microfluidics further improves the commercialization potential of this technology. The progress in 3D printing technology allows for the integration of microfluidics with tissue engineering that may revolutionize current practices in biology and medicine. This review categorizes ART methods according to continuous‐flow microfluidics, paper‐based microfluidics, droplet‐based microfluidics, and organ‐on‐a‐chip. The advances are summarized and potential opportunities in infertility diagnosis, sperm selection, sperm guidance, oocyte selection, insemination, embryo culture, embryo monitoring, and cryopreservation are identified. While some advances of continuous‐flow microfluidics for ART have already been reviewed, other microfluidic techniques are still in their early stages. It is envisioned that advances in droplet‐based microfluidics, especially digital microfluidics, will allow for more progress in human IVF, particularly single embryo transfer. Droplet‐based microfluidics may also lead to fully integrated and high‐throughput platforms for animal IVF. Recent advances in organ‐on‐a‐chip including ovary/uterus/oviduct‐on‐chip platforms hold promise for the integration of the whole human reproductive system‐on‐a‐chip for clinical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here