z-logo
Premium
Model reference adaptive iterative learning control for linear systems
Author(s) -
Tayebi A.
Publication year - 2006
Publication title -
international journal of adaptive control and signal processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.73
H-Index - 66
eISSN - 1099-1115
pISSN - 0890-6327
DOI - 10.1002/acs.913
Subject(s) - iterative learning control , adaptive control , control theory (sociology) , parametric statistics , pointwise , mathematics , convergence (economics) , interval (graph theory) , linear system , tracking error , reference model , computer science , mathematical optimization , control (management) , artificial intelligence , software engineering , combinatorics , economics , economic growth , mathematical analysis , statistics
In this paper, we propose a model reference adaptive control (MRAC) strategy for continuous‐time single‐input single‐output (SISO) linear time‐invariant (LTI) systems with unknown parameters, performing repetitive tasks. This is achieved through the introduction of a discrete‐type parametric adaptation law in the ‘iteration domain’, which is directly obtained from the continuous‐time parametric adaptation law used in standard MRAC schemes. In fact, at the first iteration, we apply a standard MRAC to the system under consideration, while for the subsequent iterations, the parameters are appropriately updated along the iteration‐axis, in order to enhance the tracking performance from iteration to iteration. This approach is referred to as the model reference adaptive iterative learning control (MRAILC). In the case of systems with relative degree one, we obtain a pointwise convergence of the tracking error to zero, over the whole finite time interval, when the number of iterations tends to infinity. In the general case, i.e. systems with arbitrary relative degree, we show that the tracking error converges to a prescribed small domain around zero, over the whole finite time interval, when the number of iterations tends to infinity. It is worth noting that this approach allows: (1) to extend existing MRAC schemes, in a straightforward manner, to repetitive systems; (2) to avoid the use of the output time derivatives, which are generally required in traditional iterative learning control (ILC) strategies dealing with systems with high relative degree; (3) to handle systems with multiple tracking objectives (i.e. the desired trajectory can be iteration‐varying). Finally, simulation results are carried out to support the theoretical development. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here