Premium
Iterative learning control for non‐repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults
Author(s) -
Jin Xu
Publication year - 2017
Publication title -
international journal of adaptive control and signal processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.73
H-Index - 66
eISSN - 1099-1115
pISSN - 0890-6327
DOI - 10.1002/acs.2734
Subject(s) - iterative learning control , actuator , control theory (sociology) , trajectory , position (finance) , tracking (education) , computer science , joint (building) , control (management) , robot , control engineering , artificial intelligence , engineering , psychology , economics , physics , astronomy , architectural engineering , pedagogy , finance
Summary In this work, we present a novel iterative learning control (ILC) scheme for a class of joint position constrained robot manipulator systems with both multiplicative and additive actuator faults. Unlike most ILC literature that requires identical reference trajectory from trail to trail, in this work the reference trajectory can be non‐repetitive over the iteration domain without assuming the identical initial condition. A t a n ‐type Barrier Lyapunov Function is proposed to deal with the constraint requirements which can be both time and iteration varying, with ILC update laws adopted to learn the iteration‐invariant system uncertainties, and robust methods used to compensate the iteration and time varying actuator faults and disturbances. We show that under the proposed ILC scheme, uniform convergence of the full state tracking error beyond a small time interval in each iteration can be guaranteed over the iteration domain, while the constraint requirements on the joint position vector will not be violated during operation. An illustrative example on a two degree‐of‐freedom robotic manipulator is presented to demonstrate the effectiveness of the proposed control scheme. Copyright © 2016 John Wiley & Sons, Ltd.