Premium
Self‐tuning weighted fusion Kalman filter for ARMA signal with colored measurement noise and its convergence analysis
Author(s) -
Liu Jinfang,
Deng Zili
Publication year - 2012
Publication title -
international journal of adaptive control and signal processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.73
H-Index - 66
eISSN - 1099-1115
pISSN - 0890-6327
DOI - 10.1002/acs.2277
Subject(s) - kalman filter , control theory (sociology) , autoregressive–moving average model , noise (video) , mathematics , estimator , fast kalman filter , algorithm , sensor fusion , filter (signal processing) , computer science , autoregressive model , extended kalman filter , statistics , artificial intelligence , control (management) , image (mathematics) , computer vision
SUMMARY For the multisensor single‐channel autoregressive moving average (ARMA) signal with colored measurement noise, when the partial model parameters and the noise variance are unknown, a self‐tuning fusion Kalman filter weighted by scalar is presented based on the ARMA innovation model by the modern time series analysis method. With the application of the recursive instrumental variable algorithm and the Gevers–Wouters iterative algorithm with dead band, the information fusion estimators for the unknown model parameters and noise variance are obtained, and their consistence is proved by the existence and continuity theorem of implicit function. Then, substituting them into the optimal weighted fusion Kalman filter, one can obtain the corresponding self‐tuning weighted fusion Kalman filter. Further, with the application of the dynamic variance error system analysis method, the convergence of the self‐tuning Lyapunov equations for filtering error cross‐covariances is proved. With the application of the dynamic error system analysis method, it is rigorously proved that the self‐tuning weighted fusion Kalman filter converges to the optimal weighted fusion Kalman filter in a realization; that is, it has asymptotic optimality. A simulation example shows its effectiveness.Copyright © 2012 John Wiley & Sons, Ltd.