z-logo
Premium
Neural network‐based adaptive attitude tracking control for flexible spacecraft with unknown high‐frequency gain
Author(s) -
Hu Qinglei
Publication year - 2010
Publication title -
international journal of adaptive control and signal processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.73
H-Index - 66
eISSN - 1099-1115
pISSN - 0890-6327
DOI - 10.1002/acs.1140
Subject(s) - control theory (sociology) , lyapunov function , spacecraft , artificial neural network , adaptive control , controller (irrigation) , nonlinear system , tracking error , computer science , vibration , attitude control , engineering , control engineering , control (management) , artificial intelligence , physics , agronomy , quantum mechanics , biology , aerospace engineering
Abstract Adaptive control design using neural networks (a) is investigated for attitude tracking and vibration stabilization of a flexible spacecraft, which is operated at highly nonlinear dynamic regimes. The spacecraft considered consists of a rigid body and two flexible appendages, and it is assumed that the system parameters are unknown and the truncated model of the spacecraft has finite but arbitrary dimension as well, for the purpose of design. Based on this nonlinear model, the derivation of an adaptive control law using neural networks (NNs) is treated, when the dynamics of unstructured and state‐dependent nonlinear function are completely unknown. A radial basis function network that is used here for synthesizing the controller and adaptive mechanisms is derived for adjusting the parameters of the network and estimating the unknown parameters. In this derivation, the Nussbaum gain technique is also employed to relax the sign assumption for the high‐frequency gain for the neural adaptive control. Moreover, systematic design procedure is developed for the synthesis of adaptive NN tracking control with L 2 ‐gain performance. The resulting closed‐loop system is proven to be globally stable by Lyapunov's theory and the effect of the external disturbances and elastic vibrations on the tracking error can be attenuated to the prescribed level by appropriately choosing the design parameters. Numerical simulations are performed to show that attitude tracking control and vibration suppression are accomplished in spite of the presence of disturbance torque/parameter uncertainty. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here