Premium
Accurate numerical prediction of acoustic wave propagation
Author(s) -
Tsuru Hideo,
Iwatsu Reima
Publication year - 2010
Publication title -
international journal of adaptive control and signal processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.73
H-Index - 66
eISSN - 1099-1115
pISSN - 0890-6327
DOI - 10.1002/acs.1118
Subject(s) - finite difference time domain method , finite difference method , grid , computer science , finite difference , acoustics , sound propagation , field (mathematics) , wave propagation , mathematics , physics , mathematical analysis , optics , geometry , pure mathematics
In the marine engineering field, a sound wave is often utilized to visualize objects. In such a sensing method, an accurate numerical prediction of sound propagation is an important issue for theoretical considerations. Recently, a finite difference method in time domain (FDTD) is often applied to wave propagation. However, an existing FDTD sometimes fails to match the accuracy to be required. In the present paper, strategies to improve conventional methods are presented: the application of the compact finite difference on staggered grid with adjusted coefficients and the usage of optimized multistep time integration. It is shown that through these tactics, a highly accurate simulation is attainable. Copyright © 2009 John Wiley & Sons, Ltd.