z-logo
open-access-imgOpen Access
Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging
Author(s) -
Pridmore Michael D.,
Glassman Gabriella E.,
Pollins Alonda C.,
Manzanera Esteve Isaac V.,
Drolet Brian C.,
Weikert Douglas R.,
Does Mark D.,
Perdikis Galen,
Thayer Wesley P.,
Dortch Richard D.
Publication year - 2021
Publication title -
annals of clinical and translational neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.824
H-Index - 42
ISSN - 2328-9503
DOI - 10.1002/acn3.51270
Subject(s) - medicine , carpal tunnel syndrome , diffusion mri , wrist , nerve injury , peripheral nerve injury , fractional anisotropy , physical medicine and rehabilitation , peripheral , traumatic brain injury , peripheral nerve , surgery , radiology , magnetic resonance imaging , anatomy , psychiatry
Objective Management of peripheral nerve injuries requires physicians to rely on qualitative measures from patient history, electromyography, and physical exam. Determining a successful nerve repair can take months to years for proximal injuries, and the resulting delays in clinical decision‐making can lead to a negative impact on patient outcomes. Early identification of a failed nerve repair could prevent permanent muscle atrophy and loss of function. This study aims to test the feasibility of performing diffusion tensor imaging (DTI) to evaluate injury and recovery following repair of wrist trauma. We hypothesize that DTI provides a noninvasive and reliable assessment of regeneration, which may improve clinical decision‐making and alter the clinical course of surgical interventions. Methods Clinical and MRI measurements from subjects with traumatic peripheral nerve injury, carpal tunnel syndrome, and healthy control subjects were compared to evaluate the relationship between DTI metrics and injury severity. Results Fractional anisotropy from DTI was sensitive to differences between damaged and healthy nerves, damaged and compressed nerves, and injured and healthy contralateral nerves. Longitudinal measurements in two injury subjects also related to clinical outcomes. Implications of other diffusion measures are also discussed. Interpretation DTI is a sensitive tool for wrist nerve injuries and can be utilized for monitoring nerve recovery. Across three subjects with nerve injuries, this study has shown how DTI can detect abnormalities between injured and healthy nerves, measure recovery, and determine if re‐operation was successful. Additional comparisons to carpal tunnel syndrome and healthy nerves show that DTI is sensitive to the degree of impairment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here