z-logo
open-access-imgOpen Access
Automation of radiation treatment planning for rectal cancer
Author(s) -
Huang Kai,
Das Prajnan,
Olanrewaju Adenike M.,
Cardenas Carlos,
Fuentes David,
Zhang Lifei,
Hancock Donald,
Simonds Hannah,
Rhee Dong Joo,
Beddar Sam,
Briere Tina M.,
Court Laurence
Publication year - 2022
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13712
Subject(s) - radiation treatment planning , automation , colorectal cancer , medical physics , radiation therapy , medicine , nuclear medicine , computer science , cancer , radiology , engineering , mechanical engineering
Abstract Purpose To develop an automated workflow for rectal cancer three‐dimensional conformal radiotherapy (3DCRT) treatment planning that combines deep learning (DL) aperture predictions and forward‐planning algorithms. Methods We designed an algorithm to automate the clinical workflow for 3DCRT planning with field aperture creations and field‐in‐field (FIF) planning. DL models (DeepLabV3+ architecture) were trained, validated, and tested on 555 patients to automatically generate aperture shapes for primary (posterior–anterior [PA] and opposed laterals) and boost fields. Network inputs were digitally reconstructed radiographs, gross tumor volume (GTV), and nodal GTV. A physician scored each aperture for 20 patients on a 5‐point scale (>3 is acceptable). A planning algorithm was then developed to create a homogeneous dose using a combination of wedges and subfields. The algorithm iteratively identifies a hotspot volume, creates a subfield, calculates dose, and optimizes beam weight all without user intervention. The algorithm was tested on 20 patients using clinical apertures with varying wedge angles and definitions of hotspots, and the resulting plans were scored by a physician. The end‐to‐end workflow was tested and scored by a physician on another 39 patients. Results The predicted apertures had Dice scores of 0.95, 0.94, and 0.90 for PA, laterals, and boost fields, respectively. Overall, 100%, 95%, and 87.5% of the PA, laterals, and boost apertures were scored as clinically acceptable, respectively. At least one auto‐plan was clinically acceptable for all patients. Wedged and non‐wedged plans were clinically acceptable for 85% and 50% of patients, respectively. The hotspot dose percentage was reduced from 121% ( σ  = 14%) to 109% ( σ  = 5%) of prescription dose for all plans. The integrated end‐to‐end workflow of automatically generated apertures and optimized FIF planning gave clinically acceptable plans for 38/39 (97%) of patients. Conclusion We have successfully automated the clinical workflow for generating radiotherapy plans for rectal cancer for our institution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here