z-logo
open-access-imgOpen Access
Impact of systematic MLC positional uncertainties on the quality of single‐isocenter multi‐target VMAT‐SRS treatment plans
Author(s) -
Prentou Georgia,
Pappas Eleftherios P,
Prentou Eleni,
Yakoumakis Nikolaos,
Paraskevopoulou Chryssa,
Koutsouveli Efi,
Pantelis Evaggelos,
Papagiannis Panagiotis,
Karaiskos Pantelis
Publication year - 2022
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13708
Subject(s) - isocenter , offset (computer science) , dosimetry , nuclear medicine , systematic error , computer science , mathematics , medicine , statistics , imaging phantom , programming language
Purpose To study the impact of systematic MLC leaf positional uncertainties (stemming from mechanical inaccuracies or sub‐optimal MLC modeling) on the quality of intracranial single‐isocenter multi‐target VMAT‐SRS treatment plans. An estimation of appropriate tolerance levels is attempted. Methods Five patients, with three to four metastases and at least one target lying in close proximity to organs‐at‐risk (OARs) were included in this study. A single‐isocenter multi‐arc VMAT plan per patient was prepared, which served as the reference for dosimetric impact evaluation. A range of leaf offsets was introduced (±0.03 mm up to ±0.30 mm defined at the MLC plane) to both leaf banks, by varying the leaf offset MLC modeling parameter in Monaco for all the prepared plans, in order to simulate projected leaf offsets of ±0.09 mm up to ±0.94 mm at the isocenter plane, respectively. For all offsets simulated and cases studied, dose distributions were re‐calculated and compared with the corresponding reference ones. An experimental dosimetric procedure using the SRS mapCHECK diode array was also performed to support the simulation study results and investigate its suitability to detect small systematic leaf positional errors. Results Projected leaf offsets of ±0.09 mm were well‐tolerated with respect to both target dosimetry and OAR‐sparing. A linear relationship was found between D 95% percentage change and projected leaf offset (slope: 12%/mm). Impact of projected offset on target dosimetry was strongly associated with target volume. In two cases, plans that could be considered potentially clinically unacceptable (i.e., clinical dose constraint violation) were obtained even for projected offsets as small as 0.19 mm. The performed experimental dosimetry check can detect potential small systematic leaf errors. Conclusions Plan quality indices and dose–volume metrics are very sensitive to systematic sub‐millimeter leaf positional inaccuracies, projected at the isocenter plane. Acceptable and tolerance levels in systematic MLC uncertainties need to be tailored to VMAT‐SRS spatial and dosimetric accuracy requirements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here