
A detailed process map for clinical workflow of a new biology‐guided radiotherapy (BgRT) machine
Author(s) -
Hwang MinSig,
Lalonde Ron,
Huq M. Saiful
Publication year - 2022
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13606
Subject(s) - workflow , medical physics , process (computing) , radiation therapy , computer science , radiation oncology , plan (archaeology) , nuclear medicine , medicine , artificial intelligence , radiology , database , history , archaeology , operating system
Purpose Biology‐guided radiotherapy (BgRT) is a new external beam radiation therapy modality combining PET‐CT with a linear accelerator that has the potential to track and treat one or more tumors in real‐time. The use of PET and radiopharmaceutical tracers introduces new processes that are different from the existing treatment processes. In this study, we have developed a process map for the clinical implementation of a prototype BgRT machine. Methods A team of 13 members from various radiation therapy disciplines at our institution participated in developing a prospective process map for a prototype BgRT machine. The methodology provided by the AAPM TG 100 report was followed. In particular, the steps unique to the BgRT workflow, using hypofractionated stereotactic body radiation therapy with fluorodeoxyglucose radiolabeled with fluorine‐18 (FDG) to guide beam delivery, were analyzed. Results The multi‐disciplinary team in the department of radiation oncology at our institution developed a prospective process map for the clinical BgRT workflow. By focusing on the appropriate level of detail, 15 major subprocesses, 133 steps, and 248 substeps were identified and the process map was agreed upon as being useful, implementable, and manageable. Seventy‐four steps from nine subprocesses, 55.6% of the whole process, were analyzed to be the BgRT unique steps. They originate mainly from: (1) acquiring multiple PET images at the BgRT machine with separate patient visits, (2) creating a unique biological treatment volume for BgRT plan (PTV BgRT ), and (3) BgRT plan optimization and treatment delivery using PET images. Conclusion Using BgRT to irradiate multiple metastases in the same session will impact clinical workflow, thus a graphical process map depicting the new clinical workflow with an appropriate level of detail is critical for efficient, safe, and high‐quality care. The prospective process map will guide the successful setup and use of the new BgRT system.