z-logo
open-access-imgOpen Access
Shift detection discrepancy between ExacTrac Dynamic system and cone‐beam computed tomography
Author(s) -
Chow Vivian U. Y.,
Cheung Michael L. M.,
Kan Monica W. K.,
Chan Anthony T. C.
Publication year - 2022
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13567
Subject(s) - imaging phantom , cone beam computed tomography , image guided radiation therapy , pelvis , nuclear medicine , cone beam ct , materials science , tracking (education) , biomedical engineering , medical imaging , computed tomography , medicine , radiology , psychology , pedagogy
Accurate detection of patient shift is essential during radiation therapy such that optimal dose is delivered to the tumor while minimizing radiation to surrounding normal tissues. The shift detectability of a newly developed optical surface and thermal tracking system, which was known as ExacTrac Dynamic (EXTD), was evaluated by comparing its performance with the image guidance under cone‐beam computed tomography (CBCT). Anthropomorphic cranial and pelvis phantoms with internal bone‐like structures and external heat pad were utilized to study the shift detection discrepancy between EXTD system and CBCT. Random displacements within the range of ± 2 cm for translations and ± 2 degrees for rotations were intentionally applied to the phantom. Positional shifts detected by optical surface and thermal tracking (EXTD_Thml), stereoscopic X‐ray (EXTD_Xray), and CBCT were compared in 6 degrees of freedom. The translational difference between EXTD_Thml and CBCT was 0.57 ± 0.41 mm and 0.66 ± 0.40 mm for cranial and pelvis phantom, respectively, while it was 0.60 ± 0.43 mm and 0.76 ± 0.49 mm between EXTD_Xray and CBCT, respectively. For rotational movement, the difference between EXTD_Thml and CBCT was 0.19 ± 0.16° and 0.19 ± 0.22° for cranial and pelvis phantom, respectively, while it was 0.13 ± 0.18° and 0.65 ± 0.46° between EXTD_Xray and CBCT, respectively. This study demonstrated that the EXTD system with thermal mapping ability could offer comparable accuracy for shift detection with CBCT on both cranial and pelvis phantoms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here