z-logo
open-access-imgOpen Access
Commissioning a multileaf collimator virtual cone for the stereotactic radiosurgery of trigeminal neuralgia
Author(s) -
Brown Thomas A. D.,
Ayers Rex G.,
Popple Richard A.
Publication year - 2022
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13562
Subject(s) - radiosurgery , trigeminal neuralgia , multileaf collimator , trigeminal nerve , medicine , medical physics , nuclear medicine , radiology , surgery , radiation treatment planning , radiation therapy
A multileaf collimator (MLC), virtual‐cone treatment technique has been commissioned for trigeminal neuralgia (TGN) at Tri‐Cities Cancer Center (TCCC). This novel technique was initially developed at the University of Alabama in Birmingham (UAB); it is designed to produce a spherical dose profile similar to a fixed, 5‐mm conical collimator distribution. Treatment is delivered with a 10‐MV flattening‐filter‐free (FFF) beam using a high‐definition MLC on a Varian Edge linear accelerator. Absolute dose output and profile measurements were performed in a 20 × 20 × 14 cm 3 solid‐water phantom using an Exradin W2 scintillation detector and Gafchromic EBT3 film. Dose output constancy for the virtual cone was evaluated over 6 months using an Exradin A11 parallel plate chamber. The photo‐neutron dose generated by these treatments was assessed at distances of 50 and 100 cm from isocenter using a Ludlum Model 30–7 Series Neutron Meter. TGN treatments at TCCC have been previously delivered at 6‐MV FFF using a 5‐mm stereotactic cone. To assess the dosimetric impact of using a virtual cone, eight patients previously treated for TGN with a 5‐mm cone were re‐planned using a virtual cone. Seven patients have now been treated for TGN using a virtual cone at TCCC. Patient‐specific quality assurance was performed for each patient using Gafchromic EBT‐XD film inside a Standard Imaging Stereotactic Dose Verification Phantom. The commissioning results demonstrate that the virtual‐cone dosimetry, first described at UAB, is reproducible on a second Edge linear accelerator at an independent clinical site. The virtual cone is a credible alternative to a physical, stereotactic cone for the treatment of TGN at TCCC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here