z-logo
open-access-imgOpen Access
Commissioning a secondary dose calculation software for a 0.35 T MR‐linac
Author(s) -
Price Alex T.,
Knutson Nels C.,
Kim Taeho,
Green Olga L.
Publication year - 2022
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13452
Subject(s) - imaging phantom , collimator , monitor unit , radiation treatment planning , linear particle accelerator , nuclear medicine , magnetic field , field (mathematics) , physics , computational physics , mathematics , optics , radiation therapy , beam (structure) , medicine , radiology , quantum mechanics , pure mathematics
Secondary external dose calculations for a 0.35 T magnetic resonance image‐guided radiation therapy (MRgRT) are needed within the radiation oncology community to follow safety standards set forth within the field. We evaluate the commercially available software, RadCalc, in its ability to accurately perform monitor unit dose calculations within a magnetic field. We also evaluate the potential effects of a 0.35 T magnetic field upon point dose calculations. Monitor unit calculations were evaluated with (wMag) and without (noMag) a magnetic field considerations in RadCalc for the ViewRay MRIdian. The magnetic field is indirectly accounted for by using asymmetric profiles for calculation. The introduction of double‐stacked multi‐leaf collimator leaves was also included in the monitor unit calculations and a single transmission value was determined. A suite of simple and complex geometries with a variety field arrangements were calculated for each method to demonstrate the effect of the 0.35 T magnetic field on monitor unit calculations. Finally, 25 patient‐specific treatment plans were calculated using each method for comparison. All simple geometries calculated in RadCalc were within 2% of treatment planning system (TPS) values for both methods, except for a single noMag off‐axis comparison. All complex muilt‐leaf collimator (MLC) pattern calculations were within 5%. All complex phantom geometry calculations were within 5% except for a single field within a lung phantom at a distal point. For the patient calculations, the noMag method average percentage difference was 0.09 ± 2.5% and the wMag average percentage difference was 0.08 ± 2.5%. All results were within 5% for the wMag method. We performed monitor unit calculations for a 0.35 T MRgRT system using a commercially available secondary monitor unit dose calculation software and demonstrated minimal impact of the 0.35 T magnetic field on monitor unit dose calculations. This is the first investigation demonstrating successful calculations of dose using RadCalc in the low‐field 0.35 T ViewRay MRIdian system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here