
Intrafraction stability using full head mask for brain stereotactic radiotherapy
Author(s) -
Tomihara Jun,
Takatsu Jun,
Sugimoto Satoru,
Shikama Naoto,
Sasai Keisuke
Publication year - 2021
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13382
Subject(s) - isocenter , mouthpiece , cone beam computed tomography , nuclear medicine , medicine , radiation therapy , pinnacle , imaging phantom , computed tomography , radiation treatment planning , radiology , dentistry
Purpose We investigated the immobilization accuracy of a new type of thermoplastic mask—the Double Shell Positioning System (DSPS)—in terms of geometry and dose delivery. Methods Thirty‐one consecutive patients with 1–5 brain metastases treated with stereotactic radiotherapy (SRT) were selected and divided into two groups. Patients were divided into two groups. One group of patients was immobilized by the DSPS (n = 9). Another group of patients was immobilized by a combination of the DSPS and a mouthpiece (n = 22). Patient repositioning was performed with cone beam computed tomography (CBCT) and six‐degree of freedom couch. Additionally, CBCT images were acquired before and after treatment. Registration errors were analyzed with off‐line review. The inter‐ and intrafractional setup errors, and planning target volume (PTV) margin were also calculated. Delivered doses were calculated by shifting the isocenter according to inter‐ and intrafractional setup errors. Dose differences of GTV D 99% were compared between planned and delivered doses against the modified PTV margin of 1 mm. Results Interfractional setup errors associated with the mouthpiece group were significantly smaller than the translation errors in another group ( p = 0.03). Intrafractional setup errors for the two groups were almost the same in all directions. PTV margins were 0.89 mm, 0.75 mm, and 0.90 mm for the DSPS combined with the mouthpiece in lateral, vertical, and longitudinal directions, respectively. Similarly, PTV margins were 1.20 mm, 0.72 mm, and 1.37 mm for the DSPS in the lateral, vertical, and longitudinal directions, respectively. Dose differences between planned and delivered doses were small enough to be within 1% for both groups. Conclusions The geometric and dosimetric assessments revealed that the DSPS provides sufficient immobilization accuracy. Higher accuracy can be expected when the immobilization is combined with the use of a mouthpiece.