z-logo
open-access-imgOpen Access
Clinical assessment of geometric distortion for a 0.35T MR‐guided radiotherapy system
Author(s) -
Neylon John,
Cook Kiri A.,
Yang Yingli,
Du Dongsu,
Sheng Ke,
Chin Robert K.,
Kishan Amar U.,
Lamb James M.,
Low Daniel A.,
Cao Minsong
Publication year - 2021
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13340
Subject(s) - nuclear medicine , distortion (music) , imaging phantom , soft tissue , medicine , biomedical engineering , physics , radiology , amplifier , cmos , optoelectronics
Purpose To estimate the overall spatial distortion on clinical patient images for a 0.35 T MR‐guided radiotherapy system. Methods Ten patients with head‐and‐neck cancer underwent CT and MR simulations with identical immobilization. The MR images underwent the standard systematic distortion correction post‐processing. The images were rigidly registered and landmark‐based analysis was performed by an anatomical expert. Distortion was quantified using Euclidean distance between each landmark pair and tagged by tissue interface: bone‐tissue, soft tissue, or air‐tissue. For baseline comparisons, an anthropomorphic phantom was imaged and analyzed. Results The average spatial discrepancy between CT and MR landmarks was 1.15 ± 1.14 mm for the phantom and 1.46 ± 1.78 mm for patients. The error histogram peaked at 0–1 mm. 66% of the discrepancies were <2 mm and 51% <1 mm. In the patient data, statistically significant differences ( p ‐values < 0.0001) were found between the different tissue interfaces with averages of 0.88 ± 1.24 mm, 2.01 ± 2.20 mm, and 1.41 ± 1.56 mm for the air/tissue, bone/tissue, and soft tissue, respectively. The distortion generally correlated with the in‐plane radial distance from the image center along the longitudinal axis of the MR. Conclusion Spatial distortion remains in the MR images after systematic distortion corrections. Although the average errors were relatively small, large distortions observed at bone/tissue interfaces emphasize the need for quantitative methods for assessing and correcting patient‐specific spatial distortions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here