z-logo
open-access-imgOpen Access
Functional avoidance‐based intensity modulated proton therapy with 4DCT derived ventilation imaging for lung cancer
Author(s) -
Dougherty Jingjing M.,
Castillo Edward,
Castillo Richard,
Faught Austin M.,
Pepin Mark,
Park Sean S.,
Beltran Chris J.,
Guerrero Thomas,
Grills Inga,
Vinogradskiy Yevgeniy
Publication year - 2021
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13323
Subject(s) - proton therapy , medicine , nuclear medicine , radiation therapy , lung cancer , radiology , oncology
The primary objective is to evaluate the potential dosimetric gains of performing functional avoidance‐based proton treatment planning using 4DCT derived ventilation imaging. 4DCT data of 31 patients from a prospective functional avoidance clinical trial were evaluated with intensity modulated proton therapy (IMPT) plans and compared with clinical volumetric modulated arc therapy (VMAT) plans. Dosimetric parameters were compared between standard and functional plans with IMPT and VMAT with one‐way analysis of variance and post hoc paired student t‐test. Normal Tissue Complication Probability (NTCP) models were employed to estimate the risk of two toxicity endpoints for healthy lung tissues. Dose degradation due to proton motion interplay effect was evaluated. Functional IMPT plans led to significant dose reduction to functional lung structures when compared with functional VMAT without significant dose increase to Organ at Risk (OAR) structures. When interplay effect is considered, no significant dose degradation was observed for the OARs or the clinical target volume (CTV) volumes for functional IMPT. Using fV20 as the dose metric and Grade 2+ pneumonitis as toxicity endpoint, there is a mean 5.7% reduction in Grade 2+ RP with the functional IMPT and as high as 26% in reduction for individual patient when compared to the standard IMPT planning. Functional IMPT was able to spare healthy lung tissue to avoid excess dose to normal structures while maintaining satisfying target coverage. NTCP calculation also shows that the risk of pulmonary complications can be further reduced with functional based IMPT.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here