z-logo
open-access-imgOpen Access
Fundamental study on quality assurance (QA) procedures for a real‐time tumor tracking radiotherapy (RTRT) system from the viewpoint of imaging devices
Author(s) -
Kimura Suguru,
Miyamoto Naoki,
Sutherland Kenneth L.,
Suzuki Ryusuke,
Shirato Hiroki,
Ishikawa Masayori
Publication year - 2021
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13307
Subject(s) - quality assurance , standard deviation , imaging phantom , tracking (education) , noise (video) , computer science , image quality , gold standard (test) , fluoroscopy , computer vision , nuclear medicine , artificial intelligence , mathematics , medicine , image (mathematics) , statistics , radiology , psychology , pedagogy , external quality assessment , pathology
Purpose The real‐time tumor tracking radiotherapy (RTRT) system requires periodic quality assurance (QA) and quality control. The goal of this study is to propose QA procedures from the viewpoint of imaging devices in the RTRT system. Methods Tracking by the RTRT system (equips two sets of colored image intensifiers (colored I.I.s) fluoroscopy units) for the moving gold‐marker (diameter 2.0 mm) in a rotating phantom were performed under various X‐ray conditions. To analyze the relationship between fluoroscopic image quality and precision of gold marker coordinate calculation, the standard deviation of the 3D coordinate (σ3D [mm]) of the gold marker, the mean of the pattern recognition score (PRS) and the standard deviation of the distance between rays (DBR) (σDBR [mm]) were evaluated. Results When tracking with speed of 10‐60 mm/s, σDBR increased, though the mean PRS did not change significantly (p>0.05). On the contrary, the mean PRS increased depending on the integral noise equivalent quanta (∫NEQ) that is an indicator of image quality calculated from the modulation transfer function (MTF) as an indicator of spatial resolution and the noise power spectrum (NPS) as an indicator of noise characteristic. Conclusion The indicators of NEQ, MTF, and NPS were useful for managing the tracking accuracy of the RTRT system. We propose observing the change of these indicators as additional QA procedures for each imaging device from the commissioning baseline.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here