z-logo
open-access-imgOpen Access
Usability of detecting delivery errors during treatment of prostate VMAT with a gantry‐mounted transmission detector
Author(s) -
Honda Hirofumi,
Tominaga Masahide,
Sasaki Motoharu,
Oita Masataka,
Kanzaki Hiromitsu,
Hamamoto Yasushi,
Ishii Yoshiaki,
Yamamoto Ryuji,
Mochizuki Teruhito,
Kido Teruhito,
Uto Yoshihiro
Publication year - 2021
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13260
Subject(s) - multileaf collimator , nuclear medicine , imaging phantom , standard deviation , radiation therapy , medicine , mathematics , radiation treatment planning , surgery , statistics
Abstract Volumetric‐modulated arc therapy (VMAT) requires highly accurate control of multileaf collimator (MLC) movement, rotation speed of linear accelerator gantry, and monitor units during irradiation. Pretreatment validation and monitoring of these factors during irradiation are necessary for appropriate VMAT treatment. Recently, a gantry mounted transmission detector “Delta 4 Discover® (D4D)” was developed to detect errors in delivering doses and dose distribution immediately after treatment. In this study, the performance of D4D was evaluated. Simulation plans, in which the MLC position was displaced by 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm from the clinically used original plans, were created for ten patients who received VMAT treatment for prostate cancer. Dose deviation (DD), distance‐to‐agreement (DTA), and gamma index analysis (GA) for each plan were evaluated by D4D. These results were compared to the results (DD, DTA and GA) measured by Delta 4 Phantom + (D4P). We compared the deviations between the planned and measured values of the MLC stop positions A‐side and B‐side in five clinical cases of prostate VMAT during treatment and measured the GA values. For D4D, when the acceptable errors for DD, DTA, and GA were determined to be ≤3%, ≤2 mm, and ≤3%/2 mm, respectively, the minimum detectable errors in the MLC position were 2.0, 1.5, and 1.5 mm based on DD, DTA, and GA respectively. The corresponding minimum detectable MLC position errors were 2.0, 1.0, and 1.5 mm, respectively, for D4P. The deviation between the planned and measured position of MLC stopping point of prostate VMAT during treatment was stable at an average of −0.09 ± 0.05 mm, and all GA values were above 99.86%. In terms of delivering doses and dose distribution of VMAT, error detectability of D4D was comparable to that of D4P. The transmission‐type detector “D4D” is thus suitable for detecting delivery errors during irradiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here