Open Access
Dosimetric feasibility of stereotactic ablative radiotherapy in pulmonary vein isolation for atrial fibrillation using intensity‐modulated proton therapy
Author(s) -
Ren XueYing,
He PengKang,
Gao XianShu,
Zhao ZhiLei,
Zhao Bo,
Bai Yun,
Liu SiWei,
Li Kang,
Qin ShangBin,
Ma MingWei,
Zhou Jing,
Rong Yi
Publication year - 2021
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.13239
Subject(s) - medicine , nuclear medicine , proton therapy , tomotherapy , pulmonary vein , radiation therapy , atrial fibrillation , ablation , ejection fraction , radiology , heart failure , cardiology
Abstract Purpose To evaluate dosimetric properties of intensity‐modulated proton therapy (IMPT) for simulated treatment planning in patients with atrial fibrillation (AF) targeting left atrial‐pulmonary vein junction (LA‐PVJ), in comparison with volumetric‐modulated arc therapy (VMAT) and helical tomotherapy (TOMO). Methods Ten thoracic 4D‐CT scans with respiratory motion and one with cardiac motion were used for the study. Ten respiratory 4D‐CTs were planned with VMAT, TOMO, and IMPT for simulated AF. Targets at the LA‐PVJ were defined as wide‐area circumferential ablation line. A single fraction of 25 Gy was prescribed to all plans. The interplay effects from cardiac motion were evaluated based on the cardiac 4D‐CT scan. Dose‐volume histograms (DVHs) of the ITV and normal tissues were compared. Statistical analysis was evaluated via one‐way Repeated‐Measures ANOVA and Friedman’s test with Bonferroni’s multiple comparisons test. Results The median volume of ITV was 8.72cc. All plans had adequate target coverage (V 23.75Gy ≥ 99%). Compared with VMAT and TOMO, IMPT resulted in significantly lower dose of most normal tissues. For VMAT, TOMO, and IMPT plans, D mean of the whole heart was 5.52 ± 0.90 Gy, 5.89 ± 0.78 Gy, and 3.01 ± 0.57 Gy ( P < 0.001), mean dose of pericardium was 4.74 ± 0.76 Gy, 4.98 ± 0.62 Gy, and 2.59 ± 0.44 Gy ( P < 0.001), and D 0.03cc of left circumflex artery (LCX) was 13.96 ± 5.45 Gy, 14.34 ± 5.91 Gy, and 8.43 ± 7.24 Gy ( P < 0.001), respectively. However, no significant advantage for one technique over the others was observed when examining the D 0.03cc of esophagus and main bronchi. Conclusions IMPT targeting LA‐PVJ for patients with AF has high potential to reduce dose to surrounding tissues compared to VMAT or TOMO. Motion mitigation techniques are critical for a particle‐therapy approach.