z-logo
open-access-imgOpen Access
Investigating split‐filter dual‐energy CT for improving liver tumor visibility for radiation therapy
Author(s) -
DiMaso Lianna D.,
Miller Jessica R.,
Lawless Michael J.,
Bassetti Michael F.,
DeWerd Larry A.,
Huang Jessie
Publication year - 2020
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.12904
Subject(s) - contrast (vision) , nuclear medicine , visibility , contrast to noise ratio , dual energy , medicine , computer science , physics , image (mathematics) , image quality , pathology , optics , artificial intelligence , bone mineral , osteoporosis
Purpose Accurate liver tumor delineation is crucial for radiation therapy, but liver tumor volumes are difficult to visualize with conventional single‐energy CT. This work investigates the use of split‐filter dual‐energy CT (DECT) for liver tumor visibility by quantifying contrast and contrast‐to‐noise ratio (CNR). Methods Split‐filter DECT contrast‐enhanced scans of 20 liver tumors including cholangiocarcinomas, hepatocellular carcinomas, and liver metastases were acquired. Analysis was performed on the arterial and venous phases of mixed 120 kVp‐equivalent images and VMIs at 57 keV and 40 keV gross target volume (GTV) contrast and CNR were calculated. Results For the arterial phase, liver GTV contrast was 12.1 ± 10.0 HU and 43.1 ± 32.3 HU ( P  < 0.001) for the mixed images and 40 keV VMIs. Image noise increased on average by 116% for the 40 keV VMIs compared to the mixed images. The average CNR did not change significantly (1.6 ± 1.5, 1.7 ± 1.4, 2.4 ± 1.7 for the mixed, 57 keV and 40 keV VMIs ( P  > 0.141)). For individual cases, however, CNR increases of up to 607% were measured for the 40 keV VMIs compared to the mixed image. Venous phase 40 keV VMIs demonstrated an average increase of 35.4 HU in GTV contrast and 121% increase in image noise. Average CNR values were also not statistically different, but for individual cases CNR increases of up to 554% were measured for the 40 keV VMIs compared to the mixed image. Conclusions Liver tumor contrast was significantly improved using split‐filter DECT 40 keV VMIs compared to mixed images. On average, there was no statistical difference in CNR between the mixed images and VMIs, but for individual cases, CNR was greatly increased for the 57 keV and 40 keV VMIs. Therefore, although not universally successful for our patient cohort, split‐filter DECT VMIs may provide substantial gains in tumor visibility of certain liver cases for radiation therapy treatment planning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here