Open Access
Evaluation of skin dose calculation factors in interventional fluoroscopy
Author(s) -
DeLorenzo Matthew C.,
Goode Allen R.
Publication year - 2019
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.12725
Subject(s) - fluoroscopy , medical physics , medicine , nuclear medicine , radiology
Abstract Purpose The purpose of this study was to measure fluoroscopic dose calculation factors for modern fluoroscopy‐guided interventional (FGI) systems, and to fit to analytical functions for peak skin dose (PSD) calculation. Methods Table transmission factor (TTF), backscatter factor (BSF), and a newly termed kerma correction factor (KCF) were measured for two interventional fluoroscopy systems. For each setup, air kerma rates were measured using a small ionization chamber in fluoroscopic service mode while selecting kVp, copper (Cu) filter thickness, incident angle, and x‐ray field size at the assumed patient skin locations. Angle dependency on KCF was measured on the GE system at isocenter for angles of 0, 15, 30, and 40 degrees, using a range of kVp, Cu filters, and one field size. An analytical equation was created to fit the data to facilitate PSD calculation. Results For the GE system, oblique incidence measurements show KCF decreased by about 2%, 8%, and 13% for incident angles of 15, 30, and 40°, respectively, relative to KCF at 0 degree. The GE and Siemens systems' KCFs ranged from 0.89 to 1.45, and 0.64 to 1.44, respectively. The KCFs increased with a power of field size, and generally increased with kVp and Cu filter. The average percentage difference between TTF × BSF × f and KCF was 16% at normal incidence. The KCF data were successfully fitted to function of angle, field size, kVp, and Cu filter thickness using seven parameters, with an average R‐squared value of 0.98 and maximum percentage difference of 6.0%. Conclusions This study evaluated scatter factors for two fluoroscopy systems, and dependencies on angle, kVp, Cu filter, and field size, with emphasis on under table beam orientations. Analytical fitting of the data with exposure parameters may facilitate PSD calculations, and more accurately determine the potential for radiation‐induced skin injury.