z-logo
open-access-imgOpen Access
Comparison of methods to estimate water‐equivalent diameter for calculation of patient dose
Author(s) -
Daudelin Andrew,
Medich David,
Andrabi Syed Yasir,
Martel Chris
Publication year - 2018
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.12383
Subject(s) - attenuation , mathematics , water equivalent , nuclear medicine , margin (machine learning) , correction for attenuation , geometry , computer science , optics , physics , medicine , machine learning , meteorology , snow
Modern CT systems seek to evaluate patient‐specific dose by converting the CT dose index generated during a procedure to a size‐specific dose estimate using conversion factors that are related to patient attenuation properties. The most accurate way to measure patient attenuation is to evaluate a full‐field‐of‐view reconstruction of the whole scan length and calculating the true water‐equivalent diameter ( D w ) using CT numbers; however, due to time constraints, less accurate methods to estimate D w using patient geometry measurements are used more widely. In this study we compared the accuracy of D w values calculated from three different methods across 35 sample scans and compared them to the true D w . These three estimation methods were: measurement of patient lateral dimension from a pre‐scan localizer radiograph; measurement of the sum of anteroposterior and lateral dimensions from a reconstructed central slice; and using CT numbers from a central slice only. Using the localizer geometry method, 22 out of 35 (62%) samples estimated D w within 20% of the true value. The middle slice attenuation and geometry methods gave estimations within the 20% margin for all 35 samples.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom