z-logo
open-access-imgOpen Access
100 days with scans of the same Catphan phantom on the same CT scanner
Author(s) -
Husby Ellen,
Svendsen Elisabeth D,
Andersen Hilde K,
Martinsen Anne Catrine T
Publication year - 2017
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.12186
Subject(s) - imaging phantom , scanner , image quality , nuclear medicine , helical scan , image resolution , image noise , materials science , biomedical engineering , medicine , optics , physics , computer science , artificial intelligence , image (mathematics) , magnetic tape , tape recorder , acoustics
Quality control ( QC ) of CT scanners is important to evaluate image quality and radiation dose. Different QC phantoms for testing image quality parameters on CT are commercially available, and Catphan phantoms are widely used for this purpose. More data from measured image quality parameters on CT are necessary to assess test methods, tolerance levels, and test frequencies. The aim of this study was to evaluate the stability of essential image quality parameters for axial and helical scans on one CT scanner over time. A Catphan 600 phantom was scanned on a Philips Ingenuity CT scanner for 100 days over a period of 6 months. At each day of testing, one helical scan covering the entire phantom and four axial scans covering four different modules in the phantom were performed. All images were uploaded into Image Owl for automatic analysis of CT numbers, modular transfer function ( MTF ), low‐contrast resolution, noise, and uniformity. In general, the different image quality parameters for both scan techniques were stable over time compared to given tolerance levels. Average measured CT numbers differed between axial and helical scans, while MTF was almost identical for helical and axial scans. Axial scans had better low‐contrast resolution and less noise than helical scans. The uniformity was relatively similar for axial and helical scans. Most standard deviations of measured values were larger for helical scans compared to axial scans. Test results in this study were stable over time for both scan techniques, but further studies on different CT scanners are required to confirm that this also holds true for other systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here