
A novel radiation protection device based on tungsten functional paper for application in interventional radiology
Author(s) -
Monzen Hajime,
Tamura Mikoto,
Shimomura Kohei,
Onishi Yuichi,
Nakayama Shinichi,
Fujimoto Takahiro,
Matsumoto Kenji,
Hanaoka Kohei,
Kamomae Takeshi
Publication year - 2017
Publication title -
journal of applied clinical medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 48
ISSN - 1526-9914
DOI - 10.1002/acm2.12083
Subject(s) - kerma , fluoroscopy , nuclear medicine , electromagnetic shielding , radiation protection , imaging phantom , medicine , dosimetry , tungsten , radiology , materials science , metallurgy , composite material
Tungsten functional paper ( TFP ), which contains 80% tungsten by weight, has radiation‐shielding properties. We investigated the use of TFP for the protection of operators during interventional or therapeutic angiography. The air kerma rate of scattered radiation from a simulated patient was measured, with and without TFP , using a water‐equivalent phantom and fixed C‐arm fluoroscopy. Measurements were taken at the level of the operator's eye, chest, waist, and knee, with a variable number of TFP sheets used for shielding. A Monte Carlo simulation was also utilized to analyze the dose rate delivered with and without the TFP shielding. In cine mode, when the number of TFP sheets was varied through 1, 2, 3, 5, and 10, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.9%, 29.9%, 41.6%, 50.4%, and 56.2%; at chest level, 25.3%, 33.1%, 34.9%, 46.1%, and 44.3%; at waist level, 45.1%, 57.0%, 64.4%, 70.7%, and 75.2%; and at knee level, 2.1%, 2.2%, 2.1%, 2.1%, and 2.1%. In fluoroscopy mode, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.8%, 30.3%, 34.8%, 51.1%, and 58.5%; at chest level, 25.8%, 33.4%, 35.5%, 45.2%, and 44.4%; at waist level, 44.6%, 56.8%, 64.7%, 71.7%, and 77.2%; and at knee level, 2.2%, 0.0%, 2.2%, 2.8%, and 2.5%. The TFP paper exhibited good radiation‐shielding properties against the scattered radiation encountered in clinical settings, and was shown to have potential application in decreasing the radiation exposure to the operator during interventional radiology.