Open Access
Genetic engineering of AtAOX1a in Saccharomyces cerevisiae prevents oxidative damage and maintains redox homeostasis
Author(s) -
Vishwakarma Abhaypratap,
Dalal Ahan,
Tetali Sarada Devi,
Kirti Pulugurtha Bharadwaja,
Padmasree Kollipara
Publication year - 2016
Publication title -
febs open bio
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.718
H-Index - 31
ISSN - 2211-5463
DOI - 10.1002/2211-5463.12028
Subject(s) - saccharomyces cerevisiae , alternative oxidase , salicylhydroxamic acid , oxidative stress , reactive oxygen species , biochemistry , oxidative phosphorylation , nad+ kinase , arabidopsis thaliana , biology , microbiology and biotechnology , chemistry , mitochondrion , yeast , enzyme , mutant , gene
This study aimed to validate the physiological importance of Arabidopsis thaliana alternative oxidase 1a (At AOX 1a) in alleviating oxidative stress using Saccharomyces cerevisiae as a model organism. The AOX 1a transformant ( pYES 2At AOX 1a) showed cyanide resistant and salicylhydroxamic acid ( SHAM )‐sensitive respiration, indicating functional expression of AtAOX1a in S. cerevisiae . After exposure to oxidative stress, pYES2At AOX 1a showed better survival and a decrease in reactive oxygen species ( ROS ) when compared to S. cerevisiae with empty vector (pYES2). Furthermore, pYES2At AOX 1a sustained growth by regulating GPX 2 and/or TSA 2, and cellular NAD + / NADH ratio. Thus, the expression of At AOX 1a in S. cerevisiae enhances its respiratory tolerance which, in turn, maintains cellular redox homeostasis and protects from oxidative damage.