Premium
A Linear Dynamical Systems Approach to Streamflow Reconstruction Reveals History of Regime Shifts in Northern Thailand
Author(s) -
Nguyen Hung T. T.,
Galelli Stefano
Publication year - 2018
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2017wr022114
Subject(s) - streamflow , drainage basin , climatology , environmental science , regression , benchmark (surveying) , hydrology (agriculture) , geology , mathematics , geography , statistics , cartography , geodesy , geotechnical engineering
Catchment dynamics is not often modeled in streamflow reconstruction studies; yet, the streamflow generation process depends on both catchment state and climatic inputs. To explicitly account for this interaction, we contribute a linear dynamic model, in which streamflow is a function of both catchment state (i.e., wet/dry) and paleoclimatic proxies. The model is learned using a novel variant of the Expectation‐Maximization algorithm, and it is used with a paleo drought record—the Monsoon Asia Drought Atlas—to reconstruct 406 years of streamflow for the Ping River (northern Thailand). Results for the instrumental period show that the dynamic model and the linear regression benchmark have similar performance but the dynamic model is better at capturing prolonged droughts and pluvials. More importantly, the reconstructed trajectory of the state variable provides valuable insights about the catchment history—e.g., regime‐like behavior—thereby complementing the information contained in the reconstructed streamflow time series. The proposed technique can replace linear regression, since it only requires information on streamflow and climatic proxies (e.g., tree‐rings, drought indices); furthermore, it is capable of readily generating stochastic streamflow replicates. With a marginal increase in computational requirements, the dynamic model brings more desirable features and value to streamflow reconstructions.