z-logo
Premium
Numerical Simulation of Multiphase Flow in Nanoporous Organic Matter With Application to Coal and Gas Shale Systems
Author(s) -
Song Wenhui,
Yao Jun,
Ma Jingsheng,
Sun Hai,
Li Yang,
Yang Yongfei,
Zhang Lei
Publication year - 2018
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2017wr021500
Subject(s) - knudsen diffusion , wet gas , relative permeability , adsorption , permeability (electromagnetism) , materials science , porous medium , porosity , chemistry , mineralogy , thermodynamics , composite material , biochemistry , physics , organic chemistry , membrane
Abstract Fluid flow in nanoscale organic pores is known to be affected by fluid transport mechanisms and properties within confined pore space. The flow of gas and water shows notably different characteristics compared with conventional continuum modeling approach. A pore network flow model is developed and implemented in this work. A 3‐D organic pore network model is constructed from 3‐D image that is reconstructed from 2‐D shale SEM image of organic‐rich sample. The 3‐D pore network model is assumed to be gas‐wet and to contain initially gas‐filled pores only, and the flow model is concerned with drainage process. Gas flow considers a full range of gas transport mechanisms, including viscous flow, Knudsen diffusion, surface diffusion, ad/desorption, and gas PVT and viscosity using a modified van der Waals' EoS and a correlation for natural gas, respectively. The influences of slip length, contact angle, and gas adsorption layer on water flow are considered. Surface tension considers the pore size and temperature effects. Invasion percolation is applied to calculate gas‐water relative permeability. The results indicate that the influences of pore pressure and temperature on water phase relative permeabilities are negligible while gas phase relative permeabilities are relatively larger in higher temperatures and lower pore pressures. Gas phase relative permeability increases while water phase relative permeability decreases with the shrinkage of pore size. This can be attributed to the fact that gas adsorption layer decreases the effective flow area of the water phase and surface diffusion capacity for adsorbed gas is enhanced in small pore size.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here