z-logo
open-access-imgOpen Access
Long‐Term Geomagnetically Induced Current Observations From New Zealand: Peak Current Estimates for Extreme Geomagnetic Storms
Author(s) -
Rodger Craig J.,
Mac Manus Daniel H.,
Dalzell Michael,
Thomson Alan W. P.,
Clarke Ellen,
Petersen Tanja,
Clilverd Mark A.,
Divett Tim
Publication year - 2017
Publication title -
space weather
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.254
H-Index - 56
ISSN - 1542-7390
DOI - 10.1002/2017sw001691
Subject(s) - geomagnetic storm , geomagnetically induced current , storm , earth's magnetic field , return period , climatology , environmental science , meteorology , atmospheric sciences , geology , geography , physics , magnetic field , archaeology , flood myth , quantum mechanics
Geomagnetically induced current (GIC) observations made in New Zealand over 14 years show induction effects associated with a rapidly varying horizontal magnetic field (d B H /d t ) during geomagnetic storms. This study analyzes the GIC observations in order to estimate the impact of extreme storms as a hazard to the power system in New Zealand. Analysis is undertaken of GIC in transformer number six in Islington, Christchurch (ISL M6), which had the highest observed currents during the 6 November 2001 storm. Using previously published values of 3,000 nT/min as a representation of an extreme storm with 100 year return period, induced currents of ~455 A were estimated for Islington (with the 95% confidence interval range being ~155–605 A). For 200 year return periods using 5,000 nT/min, current estimates reach ~755 A (confidence interval range 155–910 A). GIC measurements from the much shorter data set collected at transformer number 4 in Halfway Bush, Dunedin, (HWB T4), found induced currents to be consistently a factor of 3 higher than at Islington, suggesting equivalent extreme storm effects of ~460–1,815 A (100 year return) and ~460–2,720 A (200 year return). An estimate was undertaken of likely failure levels for single‐phase transformers, such as HWB T4 when it failed during the 6 November 2001 geomagnetic storm, identifying that induced currents of ~100 A can put such transformer types at risk of damage. Detailed modeling of the New Zealand power system is therefore required to put this regional analysis into a global context.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom