z-logo
Premium
Investigation of the Fire Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and Geostationary Satellite Retrievals Over the Conterminous United States
Author(s) -
Li Fangjun,
Zhang Xiaoyang,
Kondragunta Shobha,
Roy David P.
Publication year - 2018
Publication title -
journal of geophysical research: biogeosciences
Language(s) - English
Resource type - Journals
eISSN - 2169-8961
pISSN - 2169-8953
DOI - 10.1002/2017jg004279
Subject(s) - environmental science , moderate resolution imaging spectroradiometer , geostationary operational environmental satellite , atmospheric sciences , geostationary orbit , biomass (ecology) , satellite , combustion , meteorology , remote sensing , geography , geology , oceanography , chemistry , organic chemistry , aerospace engineering , engineering
Biomass burning substantially contributes to atmospheric aerosol and greenhouse gas emissions that influence climate and air quality. Fire radiative energy (FRE) (units: MJ) has been demonstrated to be linearly related to biomass consumption (units: kg) with potential for improving biomass burning emission estimation. The scalar constant, termed herein as the FRE biomass combustion coefficient (FBCC) (units: kg/MJ), which converts FRE to biomass consumption, has been estimated using field and laboratory experiments, varying from 0.368 to 0.453 kg/MJ. However, quite different FBCC values, especially for satellite‐based approaches, have been reported. This study investigated the FBCC with respect to 445 wildfires that occurred from 2011 to 2012 across the Conterminous United States (CONUS) considering both polar‐orbiting and geostationary satellite data. The FBCC was derived by comparing satellite FRE estimates with biomass consumption for the CONUS. FRE was estimated using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Operational Environmental Satellite (GOES); biomass consumption was estimated using Landsat‐derived burned areas with fuel loadings from the Fuel Characteristic Classification System and using combustion completeness parameterized by Landsat burn severity and Fuel Characteristic Classification System fuelbed type. The reported results confirm the linearity of the empirical relationship between FRE and biomass consumption for wildfires. The CONUS FBCC was 0.374 kg/MJ for GOES FRE, 0.266 kg/MJ for MODIS FRE, and 0.320 kg/MJ considering both GOES and MODIS FRE. Limited sensitivity analyses, comparing MODIS and GOES FRE with biomass consumption estimated in three different ways, indicated that the FBCC varied from 0.301 to 0.458 kg/MJ.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here