z-logo
Premium
The Impact of Late Holocene Land Use Change, Climate Variability, and Sea Level Rise on Carbon Storage in Tidal Freshwater Wetlands on the Southeastern United States Coastal Plain
Author(s) -
Jones Miriam C.,
Bernhardt Christopher E.,
Krauss Ken W.,
Noe Gregory B.
Publication year - 2017
Publication title -
journal of geophysical research: biogeosciences
Language(s) - English
Resource type - Journals
eISSN - 2169-8961
pISSN - 2169-8953
DOI - 10.1002/2017jg004015
Subject(s) - holocene , wetland , marsh , geology , oceanography , climate change , environmental science , hydrology (agriculture) , ecology , geotechnical engineering , biology
This study examines Holocene impacts of changes in climate, land use, and sea level rise (SLR) on sediment accretion, carbon accumulation rates (CAR), and vegetation along a transect of tidal freshwater forested wetlands (TFFW) to oligohaline marsh along the Waccamaw River, South Carolina (four sites) and along the Savannah River, Georgia (four sites). We use pollen, plant macrofossils, accretion, and CAR from cores, spanning the last 1,500–6,000 years to test the hypothesis that TFFW have remained stable throughout the late Holocene and that marshes transitioned from TFFW during elevated SLR during the Medieval Climate Anomaly, with further transformation resulting from colonial land use change. Results show low and stable accretion and CAR through much of the Holocene, despite moderate changes associated with Holocene paleoclimate. In all records, the largest observed change occurred within the last ~400 years, driven by colonial land clearance, shifting terrigenous sediment into riparian wetlands, resulting in order‐of‐magnitude increases in accretion and C accumulation. The oligohaline marshes transitioned from TFFW ~300–500 years ago, coincident with colonial land clearance. Postcolonial decreases in CAR and accretion occur because of watershed reforestation over the last century. All sites show evidence of recent (decades to century) swamp forest decline due to increasing salinity and tidal inundation from SLR. This study suggests that allochthonous sediment input during colonialization helped maintain TFFW but that current SLR rates are too high for TFFW to persist, although higher accretion rates in oligohaline marshes increase the resilience of tidal wetlands as they transition from TFFW to marsh.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here