z-logo
Premium
A Low O/Si Ratio on the Surface of Mercury: Evidence for Silicon Smelting?
Author(s) -
McCubbin Francis M.,
Vander Kaaden Kathleen E.,
Peplowski Patrick N.,
Bell Aaron S.,
Nittler Larry R.,
Boyce Jeremy W.,
Evans Larry G.,
Keller Lindsay P.,
Elardo Stephen M.,
McCoy Timothy J.
Publication year - 2017
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
eISSN - 2169-9100
pISSN - 2169-9097
DOI - 10.1002/2017je005367
Subject(s) - graphite , mercury (programming language) , smelting , silicate , silicon , metal , astrobiology , regolith , metallurgy , mineralogy , materials science , geology , chemistry , computer science , programming language , physics , organic chemistry
Data from the Gamma‐Ray Spectrometer (GRS) that flew on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft indicate that the O/Si weight ratio of Mercury's surface is 1.2 ± 0.1. This value is lower than any other celestial surface that has been measured by GRS and suggests that 12–20% of the surface materials on Mercury are composed of Si‐rich, Si‐Fe alloys. The origin of the metal is best explained by a combination of space weathering and graphite‐induced smelting. The smelting process would have been facilitated by interaction of graphite with boninitic and komatiitic parental liquids. Graphite entrained at depth would have reacted with FeO components dissolved in silicate melt, resulting in the production of up to 0.4–0.9 wt % CO from the reduction of FeO to Fe 0 —CO production that could have facilitated explosive volcanic processes on Mercury. Once the graphite‐entrained magmas erupted, the tenuous atmosphere on Mercury prevented the buildup of CO over the lavas. The partial pressure of CO would have been sufficiently low to facilitate reaction between graphite and SiO 2 components in silicate melts to produce CO and metallic Si. Although exotic, Si‐rich metal as a primary smelting product is hypothesized on Mercury for three primary reasons: (1) low FeO abundances of parental magmas, (2) elevated abundances of graphite in the crust and regolith, and (3) the presence of only a tenuous atmosphere at the surface of the planet within the 3.5–4.1 Ga timespan over which the planet was resurfaced through volcanic processes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here