z-logo
Premium
Impact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis
Author(s) -
He Cenlin,
Liou KuoNan,
Takano Yoshi,
Yang Ping,
Qi Ling,
Chen Fei
Publication year - 2018
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2017jd027752
Subject(s) - albedo (alchemy) , snow , atmospheric sciences , mixing (physics) , radiative transfer , wavelength , environmental science , meteorology , geology , physics , optics , art , quantum mechanics , performance art , art history
We quantify the effects of grain shape and multiple black carbon (BC)‐snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near‐infrared bands, respectively. BC‐snow internal mixing reduces snow albedo at wavelengths < ~1.5 μm, with negligible effects at longer wavelengths. Nonspherical snow grains show less BC‐induced albedo reductions than spheres with the same effective sizes by up to 0.06 at ultraviolet and visible bands. Compared with external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2–2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC‐snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC‐snow internal/external mixing. Combining the parameterizations with BC‐in‐snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC‐induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC‐snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC‐snow mixing state is about 21–32%.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here