z-logo
Premium
OMI Satellite and Ground‐Based Pandora Observations and Their Application to Surface NO 2 Estimations at Terrestrial and Marine Sites
Author(s) -
Kollonige Debra E.,
Thompson Anne M.,
Josipovic Miroslav,
Tzortziou Maria,
Beukes Johan P.,
Burger Roelof,
Martins Douglas K.,
Zyl Pieter G.,
Vakkari Ville,
Laakso Lauri
Publication year - 2018
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2017jd026518
Subject(s) - environmental science , radiosonde , ozone monitoring instrument , satellite , total ozone mapping spectrometer , deposition (geology) , atmospheric sciences , pollution , troposphere , ozone , climatology , meteorology , structural basin , ozone layer , geography , geology , paleontology , engineering , aerospace engineering , ecology , biology
The Pandora spectrometer that uses direct‐Sun measurements to derive total column amounts of gases provides an approach for (1) validation of satellite instruments and (2) monitoring of total column (TC) ozone (O 3 ) and nitrogen dioxide (NO 2 ). We use for the first time Pandora and Ozone Monitoring Instrument (OMI) observations to estimate surface NO 2 over marine and terrestrial sites downwind of urban pollution and compared with in situ measurements during campaigns in contrasting regions: (1) the South African Highveld (at Welgegund, 26°34′10″S, 26°56′21″E, 1,480 m asl, ~120 km southwest of the Johannesburg‐Pretoria megacity) and (2) shipboard U.S. mid‐Atlantic coast during the 2014 Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) cruise. In both cases, there were no local NO x sources but intermittent regional pollution influences. For TC NO 2 , OMI and Pandora difference is ~20%, with Pandora higher most times. Surface NO 2 values estimated from OMI and Pandora columns are compared to in situ NO 2 for both locations. For Welgegund, the planetary boundary layer (PBL) height, used in converting column to surface NO 2 value, has been estimated by three methods: co‐located Atmospheric Infrared Sounder (AIRS) observations; a model simulation; and radiosonde data from Irene, 150 km northeast of the site. AIRS PBL heights agree within 10% of radiosonde‐derived values. Absolute differences between Pandora‐ and OMI‐estimated surface NO 2 and the in situ data are better at the terrestrial site (~0.5 ppbv and ~1 ppbv or greater, respectively) than under clean marine air conditions, with differences usually >3 ppbv. Cloud cover and PBL variability influence these estimations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here