z-logo
Premium
Moored observations of the D eep W estern B oundary C urrent in the NW A tlantic: 2004–2014
Author(s) -
Toole John M.,
Andres Magdalena,
Le Bras Isabela A.,
Joyce Terrence M.,
McCartney Michael S.
Publication year - 2017
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2017jc012984
Subject(s) - boundary current , geology , water mass , oceanography , ocean current
A moored array spanning the continental slope southeast of Cape Cod sampled the equatorward‐flowing Deep Western Boundary Current (DWBC) for a 10 year period: May 2004 to May 2014. Daily profiles of subinertial velocity, temperature, salinity, and neutral density are constructed for each mooring site and cross‐line DWBC transport time series are derived for specified water mass layers. Time‐averaged transports based on daily estimates of the flow and density fields in Stream coordinates are contrasted with those derived from the Eulerian‐mean flow field, modes of DWBC transport variability are investigated through compositing, and comparisons are made to transport estimates for other latitudes. Integrating the daily velocity estimates over the neutral density range of 27.8–28.125 kg/m 3 (encompassing Labrador Sea and Overflow Water layers), a mean equatorward DWBC transport of 22.8 × 10 6  ± 1.9 × 10 6 m 3 /s is obtained. Notably, a statistically significant trend of decreasing equatorward transport is observed in several of the DWBC components as well as the current as a whole. The largest linear change (a 4% decrease per year) is seen in the layer of Labrador Sea Water that was renewed by deep convection in the early 1990s whose transport fell from 9.0 × 10 6 m 3 /s at the beginning of the field program to 5.8 × 10 6 m 3 /s at its end. The corresponding linear fit to the combined Labrador Sea and Overflow Water DWBC transport decreases from 26.4 × 10 6 to 19.1 × 10 6 m 3 /s. In contrast, no long‐term trend is observed in upper ocean Slope Water transport. These trends are discussed in the context of decadal observations of the North Atlantic circulation, and subpolar air‐sea interaction/water mass transformation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here