Premium
Fluid migration in the mantle wedge: Influence of mineral grain size and mantle compaction
Author(s) -
Cerpa Nestor G.,
Wada Ikuko,
Wilson Cian R.
Publication year - 2017
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/2017jb014046
Subject(s) - mantle wedge , mantle (geology) , geology , subduction , mantle convection , petrology , geophysics , seismology , tectonics
Mineral grain size in the mantle affects fluid migration by controlling mantle permeability; the smaller the grain size, the less permeable the mantle is. Mantle shear viscosity also affects fluid migration by controlling compaction pressure; high mantle shear viscosity can act as a barrier to fluid flow. Here we investigate for the first time their combined effects on fluid migration in the mantle wedge of subduction zones over ranges of subduction parameters and patterns of fluid influx using a 2‐D numerical fluid migration model. Our results show that fluids introduced into the mantle wedge beneath the forearc are first dragged downdip by the mantle flow due to small grain size (<1 mm) and high mantle shear viscosity that develop along the base of the mantle wedge. Increasing grain size with depth allows upward fluid migration out of the high shear viscosity layer at subarc depths. Fluids introduced into the mantle wedge at postarc depths migrate upward due to relatively large grain size in the deep mantle wedge, forming secondary fluid pathways behind the arc. Fluids that reach the shallow part of the mantle wedge spread trench‐ward due to the combined effect of high mantle shear viscosity and advection by the inflowing mantle and eventually pond at 55–65 km depths. These results show that grain size and mantle shear viscosity together play an important role in focusing fluids beneath the arc.